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Final Technical Report for AFOSR 89-0036

Professor Kevin Bowyer

Department of Computer Science and Engineering
University of South Florida
Tampa, Florida 33620
kwb@csee.usf.edu

This is the final technical report for the research grant AFOSR 89-0036, titled Development of
the Aspect Graph Representation for Use in Robot Vision. This grant covered the three-year
period November 1, 1988 through November 30, 1991. The major activities of the first two
years of the grant have previously been reported on in the First and Second Annual Technical
reports, and so this report only briefly summarizes the activities of the first two years, and
concentrates primarily on the activities during the third year of the grant.

The major research results which have come from this work are summarized below.

e Our original algorithm to compute the aspect graph of convex polyhedra was completed
[9] and used in a simple recognition system to demonstrate the possible advantages of
an aspect graph based recognition system [20, 19].

e The first algorithm for computing the exact perspective projection aspect graph of geh—
eral polyhedra was developed and implemented [21]. This implementation is being made
available to the research community via anonymous ftp.

o The first algorithm for computing the exact perspective projection aspect graph of any
class of curved-surface objects was developed and implemented {3, 8, 13]. The particular
class of objects addressed in this work was solids of revolution described as right, circular,
straight, homogeneous generalized cylinders. The implementation of this algorithm is
also being made available to the research community via anonymous ftp.

¢ The aspect graph concept was generalized from simple rigid objects to objects composed
of rigid parts which may have articulated connections between them- “articulated as-
semblies” {7, 17, 11]. Two different representations for this generalized aspect graph
were described, and algorithms were outlined for computing these representations.

e The aspect graph concept was generalized from the ideal assumptions of perfect reso-
lution in viewpoint space, image space, and object shape to finite-scale approximations
(10, 1). This initial “scale space aspect graph” work is our most recent result in the
aspect graph area, and potentially opens up a whole new line of research in making the
aspect graph better suited for practical use.

o Working with Professor Charles Dyer at the University of Wisconsin, a paper was pre-
pared which provides a tutorial introduction to the aspect graph concept and a survey
of recent results [6]. An updated version of this paper has recently been solicited as an
invited paper to the 1992 Congress of the International Society for Photogrammetry and
Remote Sensing (ISPRS).
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o A panel was arranged at the 1991 IEEE Workshop on Directions in Automated CAD-
Based Vision, on the theme “Why aspect graphs are not (yet) practical” (12] This panel
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generated a great deal of discussion, and the updated written comments of the panel
will appear as a report in an upcoming special issue of CVGIP: Image Understanding.

e In addition to our work in the area of aspect graph algorithms, we have developed a
project to investigate the “form and function” paradigm for object recognition. Under
this paradigm, the vision system initially has no explicit geometric or structural model
for any particular object. Object recognition is performed by reasoning about an object
shape to determine the function that it could ser.e. Qur first system implementation
to demonstrate this concept used a function-based model for the single object cate-
gory “chair” [5, 14, 16]. We have just recently completed evaluation of an expanded
system which deals with a collection of five separate object categories under the super-
ordinate category furniture [2]. Several additional extegsions of this work are currently
in progress.

Two appendices have been included with this report in order to provide greater technical
detail. The first appendix is a preprint of the paper “Applying the scale space concept to
perspective projection aspect graphs,” which will appear in the book titled Selected Papers
of the 7-th Scandinavian Conference on Image Analysis. The second appendix is a reprint of
the paper “Achieving generalized object recognition through reasoning about association of
function to structure,” which has recently appeared in IEEE Transactions on Pattern Analysis
and Machine Intelligence.

A list of the most important publications resulting from this research begins on the fol-
lowing page.

Eight students have completed Master’s theses related to this project, and three students
have completed Ph.D. dissertations related to this project. The three Ph.D. students are
Louise Stark, John Stewman and David Eggert. Each of the three Ph.D. students was (at
different times) partly supported by this grant.
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Abstract

Over the past few years, a number of researchers have preseated algorithms {or comput-
ing the aspect graph representation for polyhedra and curved-surface objects. However,
currently it is computed from the theoretical standpoint of perfect resolution in the view-
point, the projected image and the object shape. This means that the aspect graph may
include details that an observer could never see in practice. This paper reviews a complete
implementation of an algorithm to compute the exact aspect graph of solids of revolution
under perspective projection in 3-D space. Then we explore the notion of introducing
scale into the qualitative aspect graph {ramework, thus providing a mechanism for se-
lecting a level of detail that is “large enough® to merit explicit representation. Several
alternative interpretations of the scale space aspect sraph are examined in response o
the results produced for an example object by the implemented system.

1 Introduction

Viewer-centered representations are quite useful in the recognition of objects in a 2-D
intensity image [5). One such representation is the aspect graph [19), which is defined as
a graph structure in which (1) there is a node for each general view of the object as seen
from some maximal, connected cell of viewpoint space, and (2) there is an arc for each
visual event (of accidental view) that occurs for a transition across a boundary between
neighboring cells. A general viewpoint is defined as one from which an infinitesimal
movement in each possible direction in viewpoint space resuits in a view that is equivalent
to the original. In contrast, an accidental viewpoint is one for which there is at least
one direction in which an infinitesimal movement results in a view that is different from
the original. Under this definition the aspect graph is complete. in thal it provides an
enumeration of the fundamentally different views of an object, yet is minimal in size
since the cells of general viewpoint are disjoint.

The various algorithms that have been developed to date may be classified using three
properties; the domain of objects, the view representation and the model of viewpoint
space. The domain of objects has evolved from polygons [15], to polyhedra [14, 25,

! This work was supported at the University of South Florida by Air Force Office of Scientific Research
grant AFOSR-89-0036, National Science Foundation grant IRI-8817776, and a Florida High Technology
and Industry Council committee on Computer Integrated Engineering and Manufacturing grant.




29, 31, 33, 34), to solids of revolution (9, 10, 20], to piecewise-smooth objects [7. 26,
27, 30), to articulated assemblies [28]. Almost without exception, a view of the object
is represented using a qualitative description of the line drawing, such as the tnage
structure graph (ISG) [22]. The actual labeling of contours and junctions varies slightly
among researchers. Distinctions between general and accidental views are usually based
on isomorphism of the ISG. Lastly, two viewpoint space models are commonly used.
The first is the 2-D viewing sphere, on which each point defines a viewing direction for
orthographic projection. The other is 3-D space, in which each point is the focal point
for a perspective projection. (For greater detail on these algorithms, see [4, 11].)

Recently the practical utility of the resulting aspecl graphs has been questioned.
At the 1991 JEEE Workshop on Directions in Automaled CAD-Based Vision a panel
discussion on the theme “Why aspect graphs are not (yet) practical for computer vision”
was held [13]). One issue raised by the panel is that aspect graph research has not included
any notion of scale. In order to address this issue we have developed the concept of the
scale space aspect graph. This representation is seen as a method of countering the ideal
assumptions made concerning perfect resolution in viewpoint, the projected image and
object shape that can lead to practical difficulties.

In section two we review a particular aspect graph creation algorithm [10, i1] and ex-
amine the resulting representation for a flower vase object. In section three we define the
scale space aspect graph and its properties. Section four details three different interpre-
tations of the scale parameter that deal with the above ideal assumptions. Conclusions
and directions for future research are discussed in section five.

2 The Aspect Graph of a Solid of Revolution

In this section an overview is given of an algorithm that constructs an aspect graph and
its implementation (10, 11]. The domain of objects consists of those solids of revolution
defined by using a Generalized Cylinder model. The sweeping rule, or profile curve,
is assumed to be piece-wise continuous, single-valued, and continuously differentiable.
Each piece of the sweeping rule is described by an arbitrary degree, positive-valued
. polynomial function of the length along the object axis. Furthermore, only opaque,
matte solids without surface markings, specularities or shadows are considered. Views
of the object are represented using an image sirucfure graph to be described shortly.
Viewpoint space is defined as all of 3-D space, excluding the object volume, and the
perspective pro'jection viewing model is used.

2.1 Algorithm overview

The algorithm to compute the perspective projection aspect graph of solids of revolution
can be summarized using the following steps:

1. Determine the “lines” (or “contours”) that may interact in a view. Con-
tours are of two types, edges and limbs. Edges are the convex-shaped (with respect
to the object axis) projections of surface tangent discontinuities at an object end or
between pieces. Limbs {occluding contours) are the projections of points on the object
surface (contour generators) where a line of sight is tangent to the the object surface.
Limbs are convex or concave shaped depending on whether the portion of the surface
for which they are the projection is elliptic or hyperbolic, respectively. In order to keep
track of each type, the object is subdivided into elliptic and hyperbolic regions, one for
each limb. Also, hyperbolic regions are further divided at positions where a cusp first
occurs (a single limb splits into two pieces, one occluding the other and terminating at a




point), one for each segment. A view is described using a labeled line drawing known as
an image structure graph (ISG) [9, 22]. Arcs in the ISG are labeled according to contour
and projected region type, while nodes, are labeled according to quantity, connectivity,
and type of contours intersecting at the point (See Figure 3 for examples). Two views
are considered equivalent if and only if their corresponding 1SGs are isomorphic.

2. Determine the visual event surfaces. The types of surfaces in 3-D space that
can be generated by accidental alignments of features are limited. Clearly, the surfaces
must be ruled, as they are composed of families of lines of sight. Also, due to the
rotationally symmetry of the object, views from points along a circle centered about
and perpendicular to its axis will be the same. Thus, even the event surfaces must be
rotationally symimetric about the object axis. Only four such surfaces exist: a plane
perpendicular to the axis, a cylinder, a circular cone, and a hyperboloid of one sheet.
The visual events that generate these four surfaces fall into three general categories:

Individual Events - Since limbs are viewpoint dependent, each region for which they
are the projection has a defined range of potential visibility. This range is bounded by
surfaces (no planes) that are Langent Lo the object surface al the ends of the region.

Pair Events - Limbs and edges taken in pairs may interact. The most conumon inter-
action is occlusion. Two surfaces are generated, one that marks first contact between
contours, and one for final contact (usually one contour is completely hidden au this
point) as one moves toward the object. Planes and hyperboloids are generated due to
initial contact of the contours at two symmetric points in the image. Final contour con-
tact in the image is marked by cones and cylinders (at one point) and hyperboloids (at
two symmetric points). Nonocclusion interactions involve the formation / disappearance
of various junctions when contour generators (creases) from neighboring regions make
contact / split apart at a point on the object surface. These events generate surfaces
(again no planes) that are tangent to the object surface at the point of contact. In
addition, the planes containing the ends of object pieces mark the transformation of
junction type between edge and neighboring limbs.

Triplet Events - Three contours can appear to coincide al symmetric points in the iinage,
the event surface being a hyperboloid. Before and after this coincidence only two of the
three pair occlusion intersections are visible (different ones for each). In actuality, this
event marks the first contact of occlusion between the outermost pair of contours.

The accidental alignments that define a visual event impose constraints on its surface
parameters that translate into a system of polynomial equations. The systems for nonoc-
clusion and certain occlusion events can be solved directly. However, numerical searches
are necessary to solve the systems for most occlusion events. A geometric technique is
used to structure the searches. Since the the solution surface form is known, a subset of
the constraints will directly generate parameters of a potential surface, given the value
of one parameter. The remaining constraints yield an error imeasure for this surface in
a binary search for the value of the chosen parameter.

3. Parcellate viewpoint space. Because of rotational symmetry, a subdivision of
3-D space is sufficiently described using the parcellation of a haif-plane containing the
object axis. In the implementation (described shortly), it is assumed that the object axis
coincides with the Z axis, while the upper half (X > 0) of the X'Z plane is chosen (or
the parcellation. The curves of intersection between the event surfaces and this space,
relative to the Z axis, are: a perpendicular line, a parallel line, two lines of opposite
slope meeting at a point on the Z axis and one hal{ of a hyperbola.
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Each visual event surface has some meaningful range. For instance, the portion of
an occlusion event surface between the interacting regions is not important. Also, those
portions extending out from the interacting points are unimportant after penetrating
the object surface (if ever), due Lo global occlusion. Since the event curves in the N'Z
plane are single-valued with respect Lo Z (excepting perpendicular lines), a modified
plane sweep algorithm is used to organize the incremeantal construction of the parcella-
tion. This data structure is composed of cells (regions in the plane) defined by a set of
bounding curves, which in turn are defined by the intersection points terminating them.

4. Create the aspect graph and representative views. The aspect graph (which
has a 1-to-1 correspondence in structure to the parcellation) is constructed incremen-
tally during a traversal of the parcellation. At the same time, it is also possible to
determine the representative view of each aspect. From the most distant side view of
the object, every limb and edge is visible and connected together in a predictable man-
ner. [f one then crosses each event surface by moving towards the object, the change in
view is either a relabeling or restructuring of visible entities, or limbs may disappear.
By using a depth-first traversal through the parcellation, begun at the side view cell,
it is possible to incrementally generate ISGs of the views according to the visual events
without resorting to hidden-surface calculations.

2.2 The implementation

The implementation of the algorithm (approximately 38,000 lines of C)* includes a
visualization package (using X-windows) for observing the creation process, as well as
viewing the object, its aspects, and the parcellation. Input to the system consists of an
object definition file containing the polynomial equations and ranges of the piece-wise
profile curve. The output file contains information characterizing each aspect’s 1SG, as
well as sufficient data to reconstruct the aspect graph and its underlying parcellation.

The two main difficulties encountered during the sysiem’s development were nu-
merical precision and solving systems of polynomial equations. An extended-precision
package? was incorporated to deal with operations on polynomials, since double preci-
sion arithmetic was insufficient for accurate evaluation of “large™ (say, seven or eight)
degree polynomiais. This greatly increased calculation reliability, but at a (great) re-
duction in speed. The second problem concerned developing numerical searches to solve
the polynomial systems.Techniques such as numerical continuation and elimination the-
ory [26] were considered, but reliable results across our database of objects could not
be obtained. The eventual geometry-based searches already discussed converged for all
test cases, and were more efficient than the general techniques in many cases.

The system has constructed aspect graphs of over 100 different objects, reliably
handling those with sweeping rules of at least degree ten. (For results see [11].) The
database ranges in complexity from a cylinder (5 aspects, 0 finite~extent and 5 infinite-
extent cells) to an object with a degree eleven sweeping rule (829 aspects, 767 finite-
extent and 62 infinite~extent cells). Execution times on a SUN Sparc 1+ rauged (rom
approximately ten seconds for the cylinder to 24 hours for the more complex object,
while generating output files of size 3.5KB and 962K B, respectively. Because the aspect
graph generation is an “off-line” process, and its use an “on-line” process, the system
was designed for flexibility and accuracy, rather than speed and minimum output size.

2The software is available to interested researchers - contact David Eggert or Kevin Buwyer.
3The actual package used is the Arbitrary Precision Math Library develuped by Lloyd Zusman.
Master Byte Software, Los Gatos, California. U.S.A.
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Figure 1. Definition of flower vase sweepiug rule, r (z), and interacting regions.

2.3 An example

As an example of the system’s performance, we have chosen an object analyzed in
previous papers [9, 20] (see Figure 1.a). This object took five minutes to process resulting
in a 30KB output file. There are five surface regions which project to contours in the
image (see Figure 1.b). Upon calculating the visual events for the object, eleven event
sutrfaces (composed of nineteen meaningful portions) were found: six hyperboloids of
one sheet, three circular cones, and two vertical planes. The defining curves in the X Z
plane, along with the corresponding events, are listed in Table 1. From this set of curve
segments the parcellation of the X Z plane in Figure 2 was calculated. There are a total
of 49 aspects, numbered according to the traversal ordering established when forming the
aspect graph. Eighteen of these have infinite—extent viewing cells, but only seventeen
correspond to general views using orthographic projection [9). The inconsistency is
cell 1, the initial side view. Because of its nonexpanding cross-section, this cell only
corresponds to an accidental view (from the equator of the viewing sphere). In Figure 3
views of the object (produced by the system) are drawn for an orbit along its axis. The
corresponding ISGs for these aspects are also shown.

3 The Scale Space Aspect Graph

Now that some “typical” results for an aspect graph have been presented, we are in
a position to comment on the weaknes<ses of the representation and propose potential
improvements. These weaknesses arise from various assumptions that were made. In
this paper we do not deal with the explicit assumptions, such as the use of the ISG as a
view representation, since these vary among the known algorithms. lustead we focus on
problems inherent to the approach, which have perhaps a more fundamental impact on
aspect graph usage. These center around the qualitative nature of the representation,
i.e., the lack of scale information. Three of these basgic assumptions are:

1. The camera is idealized as a point. This assumption manifests itself in the
fact that each node in the aspect graph represents a view of equal significance. The
underlying shape and size of the cell in the parcellation has bearing on its importance.
Since a camera does have a finite size, certain views are unlikely to ever be witnessed.
For example, notice the several narrow and simall cells in the parcellation of Figure 2.

2. There is infinite resolution in the projected image. In this case each feature
in the ISG is accorded equal significance. This means that a given view may have a
feature that is too small to detect from within its cell, and two views may differ by only
such a feature and therefore be the same in practical terms. Note the size of some of
the hyperbolic limbs ending in cusps in Figure 3. Also, each portion of the line drawing
18 distinguishable at an infinite distance, a definite departure from reality. This leads to
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Table 1: Definitions of visual event curves for flower vase.
infinite-extent cells, when there should be a finite limit to meaningful viewing distance.

3. The object shape is known in minute detail. Visual events are generated
through interactions of the various surface portions. Small bumps or indentations may
generate several event surfaces, the visual changes of which might be considered insignif-
icant. Also, certain event surfaces might just exist due to a fragile alignment. Thus a
small change in the object definition may drastically alter the set of potential events,
and the shape of the parcellation. One can imagine thal a flower vase with a slightly
different shape than that in Figure 1 would have a different number of aspects.

Each of these factors seems to contribute to a representation that is larger in size than is
tealistic. (For example, the worst-case node complexity is O(N?) for a solid of revolution
defined by an Nth-degree polynomial assuming a 3-D viewpoint space.) By introducing
the concept of scale into the representation we hope to reduce this large set of theoretical
aspects to a smaller set of the “most important” aspects.

This new representation will be termed the scale space aspect graph. I[n its strictest
sense, the phrase “scale space of X” is taken to mean a parameterized family of X in
which the detail of features in X is monotonically decreasing with increasing scale. Also,
the qualitative features of X at a given scale can be traced back across all lower scales
(“causality™). This topic was popularized by Witkin's scale space analysis of a 1-D
signal [35). Since that time the scale space concept has been applied to the curvature of
2-D curves [6, 23], the curvature of 3-D curves [24], the 2-D intensity map {1, 17, 21, 36
and 3-D object shape {18]. In addition, a number of other researchers have described
similar “hierarchical” or “multi-resolution” representations, such as pyraniids.

In Witkin’s original analysis, the qualitative structure of a 1-D signal was given in
terms of inflection point locations. The 2-D scale space of a 1-D signal is developed by
introducing a second dimension, &, that represents the size of a Gaussian kernel used
to smooth the original signal. In this parameterized family of signals, a value of ¢ = 0




Figure 2: Parcellation of X' Z plane using visual event curves described in previous ligure.

yields the original, while ¢ = oo reduces the signal to a flai line. In the scale space,
a particular inflection can be traced over increasing values of o until it is eventually
annihilated (merged with a neighboring inflection). In keeping with the monotonicity
requirement, inflection points can only be annihilated as o increases, never generated.
Thus the scale at which an inflection ceases to exist is a measure of its strength.

By now, the definition of a scale space aspect graph, at least at a high level, should be
apparent. Since the aspect graph is nothing more than a qualitative description of the
underlying structure of the parcellation of viewpoint space, it is appropriate to consider
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Figure 3: Views and ISGs of aspects along orbit about object at radius of 75 units.

a parameterized family of these parcellations as the basis for the scale space. This scale
space is defined as a 4-D space (z,y, z,0) parameterized by viewpoint location and scale
value. Each visual event surface is now a function of both viewpoint and scale. Thus, at
o = 0 the parcellation of the viewpoint space, and so also the aspect graph, is exactly
as computed by some known aspect graph algorithm. As o increases, the parcellation
of viewpoint space should deform in a way such that at certain discrete values of scale
the aspect graph becomes simpler (has fewer nodes).

There are (at least) two alternative representations of the qualitative structure of
scale space as shown in Figure 4. The first, an explicit sequence of aspect graphs over
consecutive ranges of ¢ in which its structure is constant, is perhaps simpler conceptually,
but potentially has a great deal of redundancy in the multiple instances of the aspect
graph. This form bears resemblance to the visual potential of Sallam et al. [28]. In
their representation separate instances of the aspect graph are recorded for varying
articulation parameter values of an object. Here scale can be thought of similarly.

The second, a more compact representation, is directly analogous to the typical form
of the aspect graph. Each node represents a “volume” of the scale space for which
the same general view exists. Each arc again represents a visual event, but the under-
lying boundary is now parameterized by the scale dimension. This forin corresponds
most closely to the asp of Plantinga and Dyer [25]. In their representation the aspect
graph was formed as the projection of certain higher-dimensional “' olumes”, represent-
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Figure 4: Conceptual Depictions of the Scale Space Aspect Graph.

ing particular feature configurations, into the viewpoint space. This is essentially the
conversion process used to elicit whatever information is necessary for a particular scale.
Other representations, such as extensions of the interval tree concept 21, 35], may exist
depending on the interpretation of the scale parameter, the topic of the next section.

4 Interpretations of Scale

We must now speculate on how one might use a single scale parameter (or possibly
more) to create a family of parcellations of the viewpoint space. There is no one unique
possibility. Previous scale space representations have been applied to 1-D, 2-D and
3-D intensity functions by interpreting the scale parameter in terms of the solution to
the diffusion equation [17] (or more specifically, as the variance of a Gaussian kernel
used to blur the function). It has been proven thal only under this interpretation will
the qualitative features of the function disappear and not be created as the scale value
is increased [17). However, since the entities on which the aspect graph concept is
based (such as visual events, projected line drawings, and 3-D shape) are not intensity
functions, it is hard to define what one means by “blurring” the parcellation of viewpoint
space. Therefore the requirement that the quantity of features monotonically decrease
in size may have to be relaxed. We now examine the three problems addressed earlier
in search of interpretations of “blurring” the parcellation.

4.1 Scale of viewer relative to cell of viewpoint space

One interpretation is to examine the relative sizes of cells in viewpoint space with respect
to a finite-sized observer. In the past researchers have considered the probability of
certain views based on relative cell volumes {2, 11, 16, 33, 34]. However, we propose a
more extensive relation of viewer and cell, that corresponds more intuitively to blurring
the existing parcellation. In this we relax the assumption that the viewer is idealized
as a point. Instead, a finite-sized sphere, the radius of which is a function of scale,
will model the area of space in which light rays may be gathered and directed onto the
image. (Imagine rotating the circular lens of a camera about the focal point Lo sweep
out the volume of a sphere.) Any light impinging upon this sphere contributes to the
composite image, as observable features from each point in the sphere are merged.
This interpretation can also be explained in terms of changes in the parcellation as
follows. For a given size sphere there will still be a range of viewpoints in a typical cell
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Figure 5: Changes to parcellation of cylinder based on expanding sphere radius.

for which the sphere is fully contained within the cell. For those viewpoints from which
the sphere pierces the cell boundary, a composite view exists made up of those views
from the cell, the accidental boundary, and the neighboring cell. In certain cases this
view will be equivalent to that of one of the cells. For example, consider a visual event
surface (curve 18 between cells 1 and 2 in Figure 2) that marks the occlusion boundary
for a face of the object. The composite view is the same as the one in which the face
is visible. Thus the size of the multiple-face cell is impinging upon the area where the
face is hidden, by a layer of thickness equal to the viewing sphere radius. In other cases
the accidental view is really the composite view itsell. For example, consider the event
surface (curve 8 between cells 39 and 40 in Figure 2) representing a triple occlusion
point in the image. In the ideal case this alignment is only visible from the surface,
but for a given size sphere, superimposing this view with those of the neighboring cells
merely increases the apparent size of the triple point, as the nearby T junctions all merge
together. Therelore, in this instance, the formerly accidental view can be seen from a
volume of space and is how a “stable” view.

So we can model the changes to the parcellation by extending the visual event surface
positions by the radius of the current viewer sphere in one or two directions depending
on its type. If extensions occur in both directions a new general view is added 1o the
aspect graph. In addition Lo event surface extensions, the extent of viewing space is
reduced by a layer extended out from the object surface, since the camera can only get
within a certain distance of the object now. As scale (sphere radius) changes certain
cells are elimihated from the parcellation, while others come into existence. For those
cells being shrunk on all sides, they will cease to exist at a scale that corresponds to the
maximal size sphere at a point on the skeleton of the original cell produced by a medial
axis transform [3]. Notice that there may be several local maxima along the skeleton,
meaning the cell may exist as separate portions before being completely eroded. At
the time these cells cease to exist other cells are created by the overlap region of the
expanding cells. In these areas a composition of the two views is again formed. It is also
possible for these types of cells to be formed from expanding overlap regions.

Some of these occurrences are shown in Figure 5, which shows three stages in the
development of the parcellation of a cylinder. In the 2-D parcellation the viewer sphere
becomes a circle. In the beginning each event surface is extended from a two surface
view's cell into that of a one surface view. After time the one surface views are eliminated
and replaced by the overlap area in which three surfaces are seen at once. Finally, the
overlap of these regions (in which the entire object can potentially be seen) emerges




from the region about the object that the camera cannot enter. If this final {rame is
continued to where the scale is infinity, then there will be no viewing area left in which
the camera fits. The importance of the various aspects could be ranked according to the
scale at which the cell disappears. But in this case those infinite ranging cells would be
ranked equivalent. Perhaps a more accurate ranking is according to the “volume” of the
scale space cell composed of the shape of the aspect’s cell over all scales. In addition,
one may not want to examine the entire scale range up Lo infinity, as this is somewhat
unrealistic. In the next section we see one alternative to this infinite cell interpretation.

4.2 Scale of features in the projected image

The features in the image could be analyzed in at least two ways, according to their
projected nature in the umage intensity function, or in terms of their apparent size as a
function of viewpoint position. In terms of analyzing the image intensity function there
are also a couple of possibilities. Given assumptions about object surface (say mnatte in
texture) and light source placement {a point light source coincident with the viewpoint)
an image intensity function can be constructed. Such a function can be subjected to
Gaussian smoothing as a function of scale, and the resulting features analyzed. In terms
of the projected line drawing one would keep track of the edges detected in the smoothed
image that are above a given magnitude threshold. Thus “weaker” edges would disappear
first, and the strength of an edge ranks its importance. An aiternative is to describe
the image according to the surface topology of the intensity function, e.g., the “hills and
dales” representation used by Koenderink [17). He has studied the changes that occur
for a given image under Gaussian smoothing, while others are beginning to explore the
types of visual events that exist for such a representation [32]. One difficulty with this
approach is that current theory that predicts changes in the ISG is not applicable, since
the image is very closely tied to the viewpoint. Therefore we now councentrate on using
scale as a measure of the size of features in the projected line drawing.

In this approach the scale dimeusion affects the resolution of our image. and thus
our ability to detect a feature. Also, this method implicitly accounts for size effects
due to viewing distance. Some of these ideas are similar to those used by researchers
determining visibility constraints for automatic sensor placement [8]. First one must
determine which features should be concentrated upon. In order to be measured, a
feature must have some spatial extent in the image. This meaus that a junction, which
occurs at a single point, should not be a feature. Alternatively, edges (limbs) and object
faces (portions of surface patches) generally have measurable extent in a view. So, how
does one quantify the size of a feature? It is not sufficient to measure the length of an
edge or area of a face on the object. It is the projection of these features that matters.

The first solution which comes to mind is to measure the dimensions of {eatures in an
image coordinate system, the resolution of which is based on our scale parameter. The
length along a projected edge, the perimeter or area of a face, or possibly the radius of the
sphere that circumscribes the feature would be quantified in terms of a number of pixels.
Unfortunately, this approach requires a more detailed camera model; the focal distance,
the image plane size (field of view), the particular viewing direction and the viewing
position must be known. While such a sophisticated model would be more realistic, it
is too complex to consider as a first step. An alternative measurement is the angle of
visual arc o, or field of view, occupied by the feature. Given the assumption of a “360°
eye” used by many aspect graph researchers, every feature’s size can be described by
one parameter value in the range 0° — 360°. Exactly how this value is measured depends
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Figure 6: Various features of image resolution interpretation of scale.

on the feature. For a straight edge, the distance between its projected endpoints will
span a particular visual arc, as shown in Figure 6.a. For a curve, the maximum distance
between any two projected points along its length indicates the visual extent. For a face,
one must consider the maximum inscribable circle for the projected outline.

So how is the above interpretation used? It should be obvious that image resolu-
tion can be defined in terms of degree of visual arc. Pixel size in the image directly
corresponds to the minimum visual arc necessary to distinguish a feature. At a value
of 0° the camera has infinite resolution. At a value of 360° there is only a single pixel
in the image and everything projects to it. For a given scale, any feature mapping to
a size smaller than one pixel is considered as not observable. More exactly, the image
resolution has a direct effect on the shape of the visual evenl boundaries.

In reconsidering the cylinder example, a given feature such as the limb appears at the
critical size for a set of viewpoints (typically circular in nature), see Figure 6.b, which
varies as a function of the scale parameter. Within the bounds of this set the feature
is visible, outside it is not. To see how this aflects the view of a [ace, consider Lhe side
view of a cylinder from near one of the ends. As one increases the visual arc necessary Lo
distinguish a feature, the form of the view will follow that indicated in Figure 6.c. First
the nearer edge segment will appear as a point, and then the other, since the greatest
apparent width for the cylinder is directly under the viewpoint. Lastly even this is too
small, and the entire face falls below the resolution of a pixel. This view sequence also
occurs as one backs away from the object (agreeing with our intuition). Each feature
will pass from”sight as the viewpoint moves outside the range from which it is visible.

To construct a scale space aspect graph under this interpretation, one must develop
equations for the new event surfaces as a function of arc angle. One then examines how
the parcellation structure, which is of a finite size for any nonzero scale value, changes
as it goes from the ideal (¢ = 0°) to collapsing about the object. These changes include
rearranging the order of intersections, changing the overlap of two viewing regions and
noting the end of existence of certain surfaces as features are no longer visible. Such an
analysis has been performed for the case of a nonconvex polygon in a plane [12]. Again,
aspect importance should be ranked according to cell volunie in scale space.

4.3 Scale of features of object shape

In this section the effects of altering object shape according to a scale parameter are
discussed. One would hope these elfects correspond to the Joss of detail noticed while
moving away from the object. Intuitively, one wants to smooth the object surface until
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Figure 7: The effects of object smoothing on views of bowtie object.

a somewhat featureless blob is achieved, examining the parcellation along the way. The
question is how to do the smoothing. For a solid of revolution, one might think about
smoothing only the profile curve, which would eventually achieve a cylindrical shape.
But this still leaves sharp edges one would not expect to exist on a “smoothed” object.
A more general technique proposed recently is the “dynamic shape” concept (18]. This
is a form of 3-D volumetric blurring in which the surface is marked as the level set of
the resulting distribution. For instance, if the “bowtie” object in Figure 7.a were to be
subjected to this process, for a given level of smoothing the central portion of the object
would cease to exist and views of it would appear as shown in Figure 7.b. While the
view from the side might seem a logical consequence of smoothing the object, the view
from the Lop does not. One would most likely expect to see the views in Figure 7.c.
This is because the volumelric smoothing works upou solid shape, while that which is
observable is surface shape. Furthermore this surface shape is relative Lo the position of
the viewpoint, as an inch deep hole seems much larger up close than far away.

Thus we propose a diflerent smoothing approach, which is basically to smooth the
range image generated for a particular viewpoint. This smoothiug is done in the di-
rection perpendicular to the viewing direction, in a manner similar to smoothing the
image intensity function. Given such an approach the views in Figure 7.c could now be
expected. Also, the visual event surfaces generated by different portions of the object
will now be highly dependent on viewpoint position for their existence. Two portions
of the object that interact from one vantage may not have the same relative shape and
position to do so from another. Eventually the interaction will no longer occur for any
viewpoints as+-the smoothing increases. Taking this to the extreme the object shape
should tend toward an ovoid with no visual event surfaces. Again one should keep track
of the parcellation structure as the amount of smoothing is increased until the eventual
featureless state is reached.

8 Summary and Conclusions

In this paper we have examined the practical utility of the aspect graph representation.
Based on the results produced by an actual implemented system for solids of revolution
three general weaknesses were noticed: (1) the use of a point observer leads to cells of
negligible size, (2) the use of an infinite resolution image plane leads to an imbalance
in feature importance, as well as unrealistic infinite-extent celis, and (3) small details
of the object may generate many insignificant visual event surfaces. Then the notion of
the scale space aspect graph was proposed Lo evaluate the tinportance of the views as
a particular element of Llie viewing process was adjusted. These included modeling the




viewer as a finite-sized sphere, varying the image resolution, and smoothing out object
surface detail. While each of these approaches seems to incorporate a bit inore of reality
into the representation, each alone has drawbacks. For instance, increasing the viewer’s
size Lo infinity seems extreme, and infinite-extent cells continue o exist until that point.
By incorporating image resolution t!. inite nature of cells is achieved, but there are still
many small cells and extraneous visual events. Finally, parcellations based on object
smoothing suffer deficiencies similar to those for viewer size, and reducing the object Lo
a blob may also be extreme. Thus while we have made important strides in analyzing
each phenonienon individually, it is now equally important Lo study their interrelations.
By considering the visual changes as a whole, we may be able to perceive a unifying
interpretation. This will most likely lead to a comprehensive imodel requiring the use of
multiple scale parameters, or perhaps other alternatives not discussed here.
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I. INTRODUCTION

Model-based vision has been popular for some time yet still
appears far from being able to demonstrate any general-purpose 3-D
object recognition system. One current “hot” paradigm is “CAD-
based vision” — the use of exact geometric descriptions as might be
available from s CAD system. With 2 CAD-based vision system, a
unique 3-D model is stored for each object that the system is able to
recognize. Recognition may require, in the worst case, that the input
stimuli be compared to each model. Another problem encountered
with such sysiems is that the size of the database grows in direct
proportion to the number of objects the system is made capable of
recognizing. One way of alleviating this problem to some degree is
to allow parameterized representations so that objects that have the
same essential geometry or structure can be recognized (2], (6], {7}.
Still, it seems impossible to anticipate and parameterize all possible
geometric and/or structural variations that may occur within an object
category.
ider the domain of human artifacts, that is, man-made objects
that serve some specific purpose that is reflected in their extemal
physical structure (¢.g., fumiture, hand tools, utensils). For any partic-
ular object category, there is some set of functional properties shared
by all objects in that category. It is part of the thesis of our work
that the existence or nonexistence of these properties can be deduced
by analyzing the shape of an object and that this information can
be used for recognition (or, if you like, categorization). Rather than
concentrating our initial efforts on a purely theoretical elaboration
of this concept, we have chosen to develop a complete system for a
particular case study category. Our system represents the definition
of object categories and subcategories in terms of required functional
properties and represents the functional properties using procedural
knowledge. A major advantage of this representation scheme is
that the system can recognize truly novel objects, at least at the
categoty level, even though the system knows no specific geometric
or structural model for any object.

Section II reviews related research dealing with function-based
representation. Section 1] describes the recognition system, followed
by a detailed example and experimental results of the analysis of over
100 objects in Section IV. The paper concludes in Section V with
suggestions for future directions of research.

Before proceeding, it is best to explicitly define some of the
terminology we have adopted:

* Category: Using Rosch’s terminology, we are considering the
basic level category [10]. Rosch states that “basic categories
are those which carry the most information, possess the highest
category of validity, and are, thus, the most differentiated from
one another” (see p. 382 of [10]).

* Subcasegory: the term given subordinate categories (categorics
below the besic level). Each subcategory has its own set of
functional sitributes that may overlap with other subcategories.

¢ Input Object: an input 10 the system in the form of an uninter-
preted 3-D boundary description.

* Exemplar: an object categorized by the system as belonging to
s specific subcategory.

* Functional Plan: the function-bssed definition of a specific
Category or subcategory.

¢ Function Label: simply a name for the functional property being
evaluated, for example, provides sigable surface.

* Functional Element. 3 portion of the input object that fulfills
the functional requiremeats associsted with a specific funcrion
labei. There are three types of functional elements that can be
identified: 1) a single surface of the object, such as the seat of
8 chair that provides a sittable surface; 2) a group of surfaces
acting together to fulfill the required function, such as slats on
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the back of a chair act together to provide back support; 3) a
three-dimensional portion (module) of the structure.

* Association Measure: a measure that reflects the strength of the
association of the function label to the functional element or,
cumulatively, the strength of the (sub)category membership of
an object.

* Procedural Knowledge Primitive (PKP): primitive procedures
used to qualitatively evaluate the shape of an input object.

[I. BACKGROUND

Winston et al. have discussed the use of function-based definitions
of object categories [13]. They point out that there can be an infinity
of individual physical descriptions for objects in a category as simple
as “cup” but that a single functional description can be used to
represent all possible cups in a concise manner. This work is, of
course, related to Winston’s classic “arch-leaming” program [14).
This earlier program was able to leamn structural descriptions (not
function-based descriptions) of object families, such as “arch,” from
line drawings of examples.

Brady et al aiso discussed the relstion between geometric structure
and functional significance in their design of the “Mechanic’s Mate”
system (1), [3]. In part of this work, semantic net descriptions are
computed from 2-D shapes, and a generalized structural description
is learned from a sequence of positive examples.

Part of the inspiration for our work came from ideas expressed by
Minsky in his recent book [9] and in network news articles. In fact,
the category chair is used as an example by Minsky in his suggestion
that knowledge about function must be combined with knowledge
about structure.

Efforts that are more recent and closely related to ours are those of
Ho (8] and of DiManzo et al [4]. Ho considers two specific functional
concepts (chair and support) in the coatext of what is needed to
represent fuaction for recognition. The analysis is doae in the ideal
2-D cross section of the object and assumes that the object appears in
its upright orieatation. DiManzo proposes a system design that utilizes
functional knowledge within an expert system framework. Primitives
are defined in the form of individual expert systems that evaluate
the 3-D information. A prototype system is being implemented that
reeeivuaducripﬁonofaseenegenenwdbyanom\emlidmodeler.

M. SYSTEM DESCRIPTION

A high-level diagram of the system is depicted in Fig. 1.

This system reads the boundary description of an unknown 3-D
polyhedral object in terms of face lists and vertex coordinates and,
without user intervention, attempts to recognize whether the object
belongs to the category chair and, if so, into which subcategory it
falls. The size of the input object is trested as actual metric units so
that objects may be “100 big” or “too small” tc function property. (The
system has the option of scaling the input object prior to analysis. The
scale factor is calculated as the ratio of the volume of the convex hull
of the input object to the volume of the convex bull of a “typical”
straight back chair.)

In the first stage of the evaluation process, the input object is
analyzed to identify all potential functional elements. This includes
a list of individual surfaces (related to the faces of the object) and
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a list of combined surfaces. A function label can be associated t0
any of the three types of functional elements described abave. The
categorization performed by the system identifies functional elements
of an input object by associating them with their proper function label.

At this time, the hypothesis of category chair is always made by
the system without using any information derived from the structure
of the input object. Whea the number of categories represented is
expanded, heuristics will be invoked to hypothesize and prioritize
a subset of categories. For example, one possible heuristic could
evaluate the size of the object and select possible categories according
to expected size ranges. For example, the 3-D volume of a couch
would typically be much greater than a chair.

Processing of the object is guided by the function-based definition
of the hypothesized category. This control structure holds the def-
inition of the individual functional plans. Each functional plan has
associated requiremeants. In turn, each requirement is processed as an
ordered execution of primitives that qualitatively evaluate the input
shape. We have identified a set of five PKP's that can be used to
define functional requircments for the category chair.

The output of the system consists of whether the input object
belongs to the category chair and, if so, into which subcategory it
falls, as well as a cumulative association measure.

A. Procedural Knowledge Primitives

Each function label is defined using a combination of PKP’s. The
PKP’s currently used are relative orientation, dimensions, stability,
proximity, and clearance. (This list is not assumed to be complete
for all possible categories, but we expect it to be sufficient for the
superordinate category furniture.) These primitives are procedures
that make qualitative decisions about whether an object possesses
a certain primitive property. During the initial system design, we
began with a somewhat lengthier list of what we felt intuitively
were the primitive functional concepts. As our system progressed,
we often found that several of our intuitive primitives (for example,
essentially parallel and essentially orthogonal) could be subsumed
into one general routine (relative orientation), which was actually
more useful (when we added the functional plan of the subcategory
lounge chair).

The PKP relative orientation analyzes the orientation between two
surfaces by evaluating the angle between the surface normals. For
example, the sittable surface of the chair is expected to be essentially
parallel to the ground plane in the chair’s stable orientation. Some
allowable ranges of orientation are more lenient than others. For
example, the back support of a lounge chair can take on a large
range of orientations relative to the sittable surface.

The PKP dimensions tests the potential functional eclement using
multiple metrics. For example, the sittable surface of the chair is
expected to be within a certain size range (depth and width) and to
be situated within a set range above the ground (height).

The PKP stability is required for all subcategories of chair. For the
sittable surface or seat rest to0 be maintained in its required orientation,
the chair must provide stable support. Stable support is established
by finding the convex hull of the contact points of the object with
the ground plane in a given orientation. If a vector from the center of
mass of the object perpendicular to the ground plane projects within
the coavex huil of the contact points, then the object is considered to
be stable. To test if the object can act as a chair, the system applies
weight to a distribution of points on the candidate sittable surface.
This simply shifts the center of mass of the object, and therefore, the
same stability test can be reapplied.

" The proximity PKP tests to make sure two surfaces are in the
proper proximity. For example, for a functional element to act as a
back support, it must be close to the sittable surface and opposite an
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accessible area (i.e., the front of the seat). The surface must also be
above the level of the sittable surface and be approximately centered
relative to the sittable surface.

The PKP clearance is simple but extremely impornant. The func-
tional elements may all be of the proper dimensions and be situated in
the proper orientation to perform the functional requirements, but if
the elements are not accessible by the user, they cannot be considered
valid. Clearance is estabiished by specifying the area that is expected
10 be accessible by the user and making sure there are no obstructions
present. For example, the sittable surface must be clear above and “in
front of” so that there is room for the person’s torso and legs.

PKP’s are invoked in a sequence dependent on the subcategory
functional plan. All PKP’s return an association measure that reflects
how well the functional requirements are met.

B. Structure of the Class Definition for Chair

The functional representation of each category is organized in a
hierarchical graph (Fig. 2). This graph is also a control structure for
the evaluation process. Each node of the graph is represented by a
frame having four fields: Name, Type, Realized By, and Functional
Plans. The Name field holds a unique identifier. Nodes are one of
three types: Category, Subcategory, or Function. The root node in Fig.
2 is of type Category, being a basic-level category. The Functional
Plans field has as many arcs as there are subcategories defined for that
node. For example, in our current implementation, we have defined
four subcategories: Conventional Chair, Balans Chair, Lounge Chair,

The graph structure of Fig. 2 represents our function-based descrip-
tion of the category Chair. Each subgraph formed with a subcategory
frame as its root denotes a separate functional plan. Therefore,
the function-based description of the subcategory Lounge Chair is
realized by a totally different functional plan than that of the Balans
Chair.

The final field of the frame is the Realized By field. This field
points to an ordered list of function labels. The applicability of a
given function label is evaluated by the sequence of PKP invocations
associated with the function label node. For example, Conventional
Chair requires the functions provides sittable surface and provides
stable support. Both of these function labels must be satisfied at
some threshold association measure in order to consider the object to
be falling within the subcategory of Conventional Chair. It should be
noted that there may be muitiple potential results for a given object,
cach with its own association measure.

Each function label has its own specified constraint values for
each PKP invocation depending on the functional requirement being
evaluated. These values are stored in a constraint list that is associated
to the category definition. The constraint list is made up of unique
constraint identifiers, along with minrimum, maximum, and average
values for each. These constraint values have been gathered from
sources that summarize the results of ergonomic design research [5].

The base values for the accumulation of the association measure
originate with the PKP invocations. For a given PKP invocation, a
qualitative decision is first made as to whether there is any functional
element of the input object that satisfies the specified constraint range.
If not, then a measure of zero is returned for the PKP invocation;
otherwise, a list of functional elements with measures between zero
and one is returned. This list of clements may then be input to
another PKP invocation. If a required function label for a given
(sub)category has no possible clements, then the association measure
for the (sub)category may go 10 zero and further analysis for that
(sub)category discontinued. The associstion measure is passed back
to the current (sub)category, and the associstion measures of the
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Fig. 2. Category representation graph.

different function labels are combined to determine the cumulative
association measure for the (sub)category (see (12] for more details).

The category representation graph is the control structure for input
object analysis. As the graph is traversed in depth-first fashion, if
the (sub)category node has associated functional requirements, then
those requirements are evaluated. If it is found that the requirements
can be met by some portion(s) of the structure within some threshold
association measure, then the functional elements are formed into 2
list. When applicable, the proper orientation for the object is also
saved in the list.

The subcategory nodes are constrained by the information acquired
from the parent subcategory nodes. This restriction is called structural
constrains propagstion. Many functional elements have an implied
association that will constrain their possible structure and position.
For example, the functional element that acts as the back of a chair
for the subcategory Straight Beck Chair must be situated above and
approximately perpendicular to the functional element, found at the
Counventional Chair level, which acts as the sittable surface.

If more than ooe functiom label is associated with a single
(sub)category node, then the function label nodes are evaluated
in a left w right manner. Therefore, referencing the functional
requirements defined for the Conventional Chair (Fig. 2), the function
label provides sinable surface must be fulfilled before initiating the
procedural knowledge associated with provides stable support. This
implies that strucrursl constraint propagation exists berween sibling
function labels as well as between subcategory function labels.

IV. IMPLEMENTATION
The system is implemented in C on a Sun workstation. Over 100
test objects, defimed by a pumber of different individuals. have been
aaalyzed. Each object definition is composed of a face file and a

=Ny Sk

Fig. 3. Example objects recognized as straight back chairs.

vertex file.'! The recognition system reads each of these files along
with the category definition file. This file holds the information in a
format that can be read to construct the category representation graph.

The extent of how “generic” the function-based representation
scheme actually is can best be seen in a sample of the objects that
the system was capable of correctly categorizing. All of the objects
appearing in Fig. 3 (along with many others) were categorized as
straight back chairs.

Each fulfills the functional requirements of provide sirtable surface,
provide stable support and provide back support in its own way. In
order to gain a better understanding of the reasoning process, a trace
of the analysis of a simple example is now given. Fig. 4 depicts the
input of an Arm Chair and the labeled output produced by the system.

The ground plane is considered to be parallel to the X-Y plane. It is
also assumed that gravity acts in the — Z direction. As seen in Fig. 4,
input objects do not have to be in “upright” orientation. The system’s
first step is to evaluate the shape of the input object. This consists
of enumerating the surfaces and modules that can act as functional

!The collectioa of object descriptions used is available to inter-
ested researchers through anomymous ftp on figment.csee.usf.edu under
pubjerrors_stuf f/Objects.
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eiements. Individual surfaces are listed, along with all surfaces that
can be formed by grouping essennially coplanar surfaces. The object
is further evaluated by subdivision into a set of convex 3-D modules,
which are found directly from the object geometry. The center of
mass of the whole object is calculated, along with the area of each
of the surface functional clements.

A. Evaluation of 3-D Shape

Evaluation begins with the category associated with the root node.
Since there are no function labels associated with the node Chair,
processing passes to the first Subcategory Conventional Chair. The
list of PKP's invoked to realize the first function label provides
sitable surface is shown in Fig. 5(a). The dimensions PKP finds
all functional elements of the input object that are of the proper size
range to be a sittable surface. This ensures that the “seat” of the
chair is large enough to support the seat of a normal person and not
so large that it could be a couch or table top. The surface, or group of
surfaces, must also provide the proper amount of contiguous surface
area. Surfaces that survive this test include what we would think of as
the back of the chair, the seat of the chair, and the bottom of the chair.

The list of potential sittable surfaces found in the first procedure is
passed to the next PKP relative orientation. This procedure attempts
to confirm that the potential sittable surface is essentially parallel to
the ground plane. If it is not, a transformation that will orient the
potential sittable surface paraliel to the ground plane is calculated
and stored with the surface.

The oext PKP uses informstion from the prior PKP's to test
whether each potential sittable surface, when positioned parallel to
the ground, can be within the proper height range. The potential
sittable surface has been transformed such that the normal of the
surface is aligned in the + Z direction. The dimensions test finds the
greatest distance spanned by the object in the —2Z direction. This
gives a teatative height for the potential sittable surface. The back is
climinated in this test because there is no structure that can support
the back in the proper beigit range. Two surfaces remain as potential
sittable surfaces: the seat and the bottom of the chair.

The tesis performed 10 this point are computationally simple tests
that are used to prune the tist of possible functional ciements. The next
two tests ensure that the surviving surfaces are clear and accessible
for use.

A list of possible seat surfaces has now been identified (see
Fig. S(b)). If the list were empty, thea it would be decided at
this point that the object in question is not a3 conventional chair.
An association measure of zero would be retumned. and processing
would continue with the next subcategory node Balans Chair. The
associstion measure for each functionsl element found to this point
is a function of the area and the potential height. Since the list is
not empty, a list of potential sittable surfaces has been accumulated.
This completes the tests associated with the procedural knowledge
of provides sinedle surface. The list of potential sintable surfaces is
pessed to the next function lsbel node.

The second function to confirm is that the object has a base
structure that provides stable support. The only PKP associated to

this function label is stability. The procedure tests each potential
result in its specified orientation. The object must be able to be
placed in a stable position and still maintain the sittable surface
in its proper orientation. To test for stability, cach potential sittable
surface is oriented in the X-Y plane with the surface normal in
the +Z direction. The maximum —Z displacement is found. and
all vertices at this level are accumulated. These are potential points
of contact with the ground to give support to the object. One of
three conditions must exist: 1) Only a single point is in contact; 2)
multiple collinear points are in contact; 3) at least three noncollinear
points are in contact. In order to have sufficient contact, there must
be at least three noncollinear points. Hence, if one of the first twe
conditions is found, then the object must be rotated such that at least
three noncollinear points are in contact. This can lead to multiple
possible new orientations to test. For each possible orientation, a list
of contact points is accumulaicd. The convex hull of these points
is then calculated to be used in the test for stability. It is assumed
that the object has homogeneous density. Therefore, the force exerted
downward can be represented with a single vector from the center of
mass of the object pointing in the —2Z direction. If the force vector
projects into the ground plane within the coavex hull of the contact
points, then the object is “seif-stable.” It is only considered “self-
stable” because a force applied by the weight of a person does not
have to be exerted directly over the center of mass of the object. This
force can be applied in different positions downward on the sitiable
surface and tested to make sure that each resultant force (object plus
applied weight) projects inside the coavex hull.

Evidence is accumuiated at the Conventional Chair node in support
of the current hypothesis. The only surviving surface is, in fact, the
seat of the chair (Fig. 5(d)). Face #20 (the bottom of the seat) was
climinated because stable support could not be verified.

The parsing of the object continues by checking the Straight Back
Chair’s associated function label. The list of PKP’s used to confirm
provides back support is given in Fig. 5(¢). Each surface or group of
surfaces that is essentially orthogonal to the potential sittable surface
is tested. The praximity test checks to make sure the surface is close
to and centered relative to the sittable surface. Clearance is also tested
for the proposed back support relative to the potential sittable surface.
There is only one surviving orientation st this point that provides all
specified functions (Fig. 5(f)). This result is passed to the Arm Chair
subcategory.

The list of PKP’s used to realize provides arm support is depicted
in Fig. 5(g). For a surface to act as an arm support, it must be oriented
essentially paralle] to the sittable surface. The arm support surfaces
must be close and at the sides of the sittable surface. The surface must
also be clear above for accessibility. One pair is found: one surface
on each side of the sittable surface. These functional elements are
labeled, and a new association measure is calculated.

Since there are no subcategories left in this subgraph, processing
continues at the subcategory node Balans Chair. Aa association
measure of zero is returned because the functional requirements of
provides seat rest and provides knee support cannot be fulfilled by
the structure of the arm chair. Associstion measures of zero are
also found for the subcategory Lounge Chair and the subcategory

B. Experimensal Results

Each of the 101 input objects =as desigasted as either CHAIR or
NONCHAIR (see Figs. 6 and 7), based on the intuitive feelings of the
designer. The objective was 10 compare the system’s categorization
to the intuitive categorization assigned by the designers. Tabie |
summarizes the sumber of objects evaluated, the aumber categonzed
as CHAIR/NON-CHAIR by the designer, and corresponding numbers
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for the system. There is oaly one imput object intuitively categorized
by its desigmer a8 s cheir but aot recognized as such by the
system. This object (see Fig. 8(s)) was not categotized as a chair
due 10 the fact that the sysiem could not identify a contiguous
discrepancy occurred with intuitively NONCHAIR objects that the
system evalusted as being capsble of functioning as a chair. Fig.
8(b) depicts all objects that were counter-intuitively identified by the
system a8 falling into the Straight Back Chair subcategory. All of
thess objects have in common that they have some orientation in
which they can provide a sittable surface, provide stabie support, and
provide a back support. They can all, therefore, funcrion as Straight
Back Chairs. Fig. 8(c) depicts the set of objects found to be capable

of functioning as a Conventional Chair (i.e., provides sittable surface
and provides stable support). One example of this is the trash can
(object #2) in Fig. 8(c). By turning the trash can over, a person could
use the bottom as a sittable surface.

V. FUTURE RESEARCH DIRECTIONS

There are three areas we would like to investigate for extensions
to ihe present system. First, the definition of more categories can
be added to the knowledge base. We are compieting the expansion
of the system to include a number of basic level categories in
the super-ordinate category “furniture.” We also plan to add cate-
gory representation from a different super-ordinate category. perhaps
“dishes.” This will allow us to test our assumption that the number
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of PKP’s required grows very slowly with the number of categories.
This will aiso allow us to investigate the formation of heuristics in
Rypothesizing the categories to use in the evaluation process. The
stractural information attained during the enumeration of functional
clements could provide cues for the choice of hypothesis.

Second, we plan to investigate using nonideal input. Cusrently, the
input objects examined by the system are “ideal” in thst they are the

output of a CAD tool. We hope to investigate the use of two forms
of nonideal input. First, we want to explore the use of complete 3-D
models constructed from multipie real images of an object. Second,
we want to explore the use of incomplete 3-D models, as might be
obtained from a single image and/or occluded views.

Third, we plan to investigate learning capebilities of the system.
Through sn interactive process, the system could question the user as
to whether the structural differences found between objects catego-
rized by the system have any functional significance. According to the
user’s response, new subcitegories could be formed, and the control
structure could be reorganized in such 2 way as to reflect the new
functional pian. In this way, the system could learn by its experience.
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